
This paper is included in the Proceedings of the 
2021 USENIX Annual Technical Conference.

July 14–16, 2021
978-1-939133-23-6

Open access to the Proceedings of the 
2021 USENIX Annual Technical Conference 

is sponsored by USENIX.

Exploring the Design Space of Page Management 
for Multi-Tiered Memory Systems

Jonghyeon Kim, Wonkyo Choe, and Jeongseob Ahn, Ajou University
https://www.usenix.org/conference/atc21/presentation/kim-jonghyeon



Exploring the Design Space of Page Management for Multi-Tiered Memory
Systems

Jonghyeon Kim, Wonkyo Choe, and Jeongseob Ahn
Ajou University

Abstract
With the arrival of tiered memory systems comprising various
types of memory, such as DRAM and SCM, the operating
system support for memory management is becoming increas-
ingly important. However, the way that operating systems
currently manage pages was designed under the assumption
that all the memory has the same capabilities based on DRAM.
This oversimplification leads to non-optimal memory usage
in tiered memory systems. This study performs an in-depth
analysis of page management schemes in the current Linux
design extending NUMA to support systems equipped with
both DRAM and SCM (Intel’s DCPMM). In such multi-tiered
memory systems, we find that the critical factor in perfor-
mance is not only the access locality but also the access tier
of memory. When considering both characteristics, there are
several alternatives to page placement. However, current op-
erating systems only prioritize access locality. This paper ex-
plores the design space of page management schemes, called
AutoTiering, to use multi-tiered memory systems effectively.
Our evaluation results show that our proposed techniques
can significantly improve performance for various workloads,
compared to the stock Linux kernel, by unlocking the poten-
tial of the multi-tiered memory hierarchy.

1 Introduction

With the advent of in-memory computing, such as data an-
alytics, key-value stores, and graph processing, the demand
for high-density DRAM has been steadily increasing in re-
cent years [27]. However, due to the challenge of scaling
DRAM density, a new class of memory has received atten-
tion to bridge the performance gap between DRAM and SSD.
For example, Intel recently unveiled its non-volatile memory
based on 3D Xpoint technology, called Optane DC Persistent
Memory Module (DCPMM) that provides more density than
DRAM while outperforming flash-based SSDs [23]. Cloud
vendors such as Google, Oracle, Microsoft, and Baidu have
adopted such storage class memory (SCM) in their cloud
services [4, 14, 17, 25].
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Figure 1: Software-managed tiered memory system aug-
mented on the NUMA architecture

Since modern server systems are built with the Non-
Uniform Memory Access (NUMA) architecture, future large-
memory systems will take the shape of tiered memory aug-
mented on traditional NUMA architecture, called multi-tiered
memory. Figure 1 presents a real-world multi-tiered memory
system used throughout this study. Each compute chip has two
types of memory: DRAM (upper-tier) and Intel’s DCPMM
(lower-tier). We configure both DRAM and DCPMM to
be fully exposed to software as memory.

This paper presents that the recent advancement in
Linux [15] and tiered memory studies [16, 20, 35] do not
lead to optimal page placement in multi-tiered memory sys-
tems. As the new class of memory becomes part of the main
memory, the critical factor in performance is not only the
access locality but also the access tier of memory. However,
current page placement schemes have been established for
DRAM-only NUMA architecture and only consider locality
between threads and memory [2, 8, 12, 13, 21, 38]. As a result,
the current design is far from exploiting the potential benefits
of multi-tiered memory systems. For example, suppose the
local DRAM becomes full when promoting pages from the
lower-tier (DCPMM) to the upper-tier (DRAM) memory. In
this case, the current state of the art leaves the page on the
lower-tier memory, regardless of the availability of the remote
DRAM (of the upper-tier). Such a decision is reasonable for
DRAM-only NUMA systems because there is no difference
between alternatives. However, in multi-tiered memory sys-
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tems, we cannot consider every possible alternative equivalent
to the access tier. When placing pages, the access tier of mem-
ory should be considered before the access locality because
the access tier has a more significant impact on performance.

This limitation motivates us to revisit the page management
schemes of the commodity OSes and explore the design space
of page management for multi-tiered memory systems. In this
study, we introduce a set of new page management schemes.
Our first scheme, called AutoTiering-CPM, conservatively
looks for promotion or migration alternatives using the access
tier and locality metric when failing to find the best memory
node (e.g., local DRAM).

Although this conservative approach can achieve better per-
formance by considering alternatives, such a design does not
unlock the full potential of software-managed tiered mem-
ory. To effectively utilize the limited capacity of upper-tier
memory, we design a page reclamation scheme tailored to
multi-tiered memory systems. Our second technique is op-
portunistic page promotion or migration, called AutoTiering-
OPM, which judiciously demotes pages from the upper-tier
memory. To reclaim effective, we predict the least accessed
page as a victim in the upper-tier memory by estimating the
access frequency of pages. When deciding on which page to
promote, our OPM compares the page with the victim to de-
termine which is relatively more accessed. With OPM, we can
achieve better effectiveness of the upper-tier memory while
reducing the memory accesses to the lower-tier memory.

Unless there is a free space in the upper-tier memory, a
promotion operation waits until the completion of a demo-
tion operation. To hide the latency of demoting pages from
the critical path, we reserve a set of free pages in the upper-
tier memory to serve the promotion requests immediately.
When the number of reserved pages exceeds a threshold, our
kdemoted wakes up and reclaims the least accessed page to
the free page pool in the background. kdemoted differs from
the traditional reclamation because it is only responsible for
demoting pages to the lower-tier memory and not storage.

In this study, we implement our proposed schemes on top
of Linux kernel v5.3. We take advantage of the AutoNUMA
facility, which periodically scans memory pages and marks
them inaccessible to capture non-local DRAM accesses. Once
the pages are reaccessed, it incurs a page fault, called NUMA
hinting page fault. We take the NUMA faults as demand
signals for the page promotion from the DCPMM nodes or
the migration from the remote DRAM node. We build the
access history per page with the fault-based facility and use
this information when demoting pages.

The experimental results show that our AutoTiering can
significantly improve the performance of various applica-
tions. GraphMat and graph500 show performance increases
around 2.3× and 6.9×, respectively, compared with the base-
line Linux kernel [15]. Most of the SPECAccel workloads
show a 2× speedup. Compared to Intel’s recent approach [36],
our performance improvement shows up to a 3.5× speedup.
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Figure 2: Memory access latency and bandwidth for multi-
tiered and DRAM-only memory systems

2 Background and Motivation

2.1 Large Memory Systems

Data centers typically employ multi-chip NUMA architec-
ture to scale up the performance of commodity servers with
high core counts and memory capacity. Although this can in-
crease the number of DIMM slots per server, scaling DRAM
density is still a significant obstacle. It poses challenges in
cost-effectively constructing large memory systems. Mean-
while, since SCM offers byte-addressable and non-volatile
properties, it is gaining traction to bridge the performance
gap between DRAM and SSD. Intel recently released the 3D
XPoint non-volatile memory (DCPMM) that can be installed
on DIMM without modification [23]. Many cloud vendors
such as Google, Microsoft, Oracle, and Baidu have adopted
Intel’s DCPMM in their cloud services [4, 14, 17, 25]. Re-
cently, Samsung has revealed a CXL (Compute Express Link)
based DRAM module attached to the system, forming tiered
memory systems [1]. Since such new type of memory is not as
fast as DRAM, they cannot replace DRAM entirely. Instead,
future computer systems will offer a form of tiered memory
architecture with DRAM and SCM.

In this study, we take advantage of DCPMM as a new
tier between DRAM and SSD. Intel DCPMM provides two
types of tiered memory systems that can be categorized as
hardware-assisted or software-managed. In hardware-
assisted mode, DCPMM is exposed to software as the main
memory while DRAM acts as a hardware-managed cache,
non-visible to the software. The memory controller automat-
ically places frequently accessed data on the DRAM cache,
while the rest of the data is kept on a large capacity but slow
DCPMM. On the other hand, with the operating system sup-
port, both DRAM and DCPMM can be exposed as normal
memory and visible to software, tiering memory into fast and
slow [15]. We call this a software-managed tiered memory
system. In this environment, operating system support is sup-
posed to effectively use both DRAM and DCPMM because
the full control is given to software. This paper focuses on
system software aspects of tiered memory systems by under-
standing how the hardware is organized.
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2.2 Performance Characteristics

We describe the distinct performance characteristics of a
software-managed tiered memory system that runs with the
Linux operating system. Figure 1 presents the system orga-
nization used in this study. There are two CPU sockets in
the system. For each CPU socket, one DRAM node and one
DCPMM node are attached. The entire physical address space
is comprised of both the DRAM and DCPMM nodes.

In multi-tiered memory systems, the critical factors in per-
formance are not only the access locality but also the access
tier of memory. Figure 2a shows read access latency and
bandwidth for each of the four memory nodes measured from
MLC [18]. Accessing the local DRAM outperforms the other
three memory nodes, which is well established in traditional
NUMA architecture. On the other hand, we observe that local
DCPMM (L-DCPMM) is slower than that of remote DRAM
(R-DRAM) due to the device characteristics. This is in stark
contrast with the conventional wisdom that local memory is
always faster than remote memory. Note that we also observe
a similar pattern in a bandwidth measurement.

Similarly, Figure 2b shows the same type of evaluation over
the four CPU (Intel Xeon Gold 6242) sockets with DRAM-
only systems. There is no significant difference in latency and
bandwidth for access to any remote DRAM nodes. Due to this,
placing pages on the remote DRAM nodes in DRAM-only
systems is a relatively simple task.

These distinct characteristics motivate us to explore the de-
sign space of page management in operating systems. The op-
erating systems need to have the ability to (re)locate memory
efficiently and dynamically by understanding the performance
characteristics of multi-tiered memory systems. Unlike the
DRAM-only systems, not all the remote memory nodes can
be considered equal due to the access tier.

2.3 OS Support of Multi-Tiered Memory

The multi-tiered memory hierarchy that is the focus of this
paper is distinct from traditional two-tiered memory. Never-
theless, the current Linux still relies on the existing NUMA
framework to support multi-tiered memory systems. Such
limited OS support makes the page placement sub-optimal in
multi-tiered memory architectures. Although we can redefine
the NUMA distance table according to the access latency, it
does not exploit the full potential of the multi-tiered memory
systems. First, Linux classifies memory nodes as either local
or remote in a binary way. When promoting or migrating
pages, several alternatives among the remote nodes are not
considered at all. Second, the Linux does not support demot-
ing (or reclaiming) pages from the upper-tier to the lower-tier
memory. In this study, we revisit page placement strategy by
considering performance characteristics across access-tier as
well as access-locality.

3 Analysis of Page Management to Multi-
Tiered Memory Systems

In this section, we investigate existing page management tech-
niques of Linux that have been designed for DRAM-only
NUMA systems. Then, we identify the lack of sufficient sup-
port for tiered memory systems. Although AutoNUMA [33]
can be used for such multi-tiered memory, we observe that it
fails to take full advantage of the multi-tiered memory.

3.1 Initial Page Placement

With the introduction of storage class memory (e.g., Optane
DCPMM) in main memory, conventional page placement based
only on the access locality has a negative impact on per-
formance because the most critical factor in performance is
not only the locality but also the memory tier. Meanwhile,
current page placement schemes in operating systems have
been well established for DRAM-based NUMA architecture,
considering the access locality only between threads and mem-
ory [8, 13, 21]. In Linux, the default page allocation policy
tries to use local memory as much as possible to minimize
the performance penalty incurred by accessing remote mem-
ory. Only if there is no free space in the local memory, the
memory allocator looks for free space on a remote memory
node known as a fallback path [9].

As a result, the default (local-first) allocation policy
is considered harmful in multi-tiered memory systems. The
numbers in Figure 1a present the order used in the default
fallback path when a thread runs on CPU-0, considering only
the physical distance. If the local-DRAM node does not have
enough free space, the memory allocator examines the fall-
back path to determine which memory node the allocation
request should be sent. We anticipate that the allocator should
ask the remote DRAM node to get a free page because this
node provides better performance than the local DCPMM
node. Surprisingly, however, the fallback path in the state-of-
the-art Linux kernel indicates the local DCPMM (lower-tier).
It had not taken into account the distinct characteristic that
the memory type is more sensitive to performance than the
access locality in multi-tiered memory systems.

Problem: If the local DRAM is full, the fallback prioritizes
allocating from the local DCPMM (lower-tier), even though
the remote DRAM (upper-tier) performs better.

3.2 Dynamic Placement

Although initial page placement plays a crucial role in the
given memory space, the decision may not represent optimal
performance because it depends on the memory access traffic
at runtime. To adjust the placement of pages according to
access patterns, the AutoNUMA facility has been included
as part of Linux, automatically migrating pages to a mem-
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Figure 3: Page distribution and access intensity of graph500
across memory nodes (Darker colors refer to pages that are
accessed relatively more frequently.)

ory node closer to the thread running at runtime [33]. The
operating system examines the access locality to find whether
the accessed page is placed on the local memory or remote
memory. If this is on the remote memory, the page is migrated
to the local memory to avoid the remote accesses for subse-
quent requests. This approach improves the performance of
applications running on DRAM-only NUMA systems.

However, we find that the current design does not exploit
the advantages of the multi-tiered memory hierarchy. Fig-
ure 3 presents memory usage across the memory nodes for
graph500 with the 128GB dataset as time goes by. The de-
tailed experimental setup is explained in Section 5. First, we
notice that the upper-tier memory is ineffectively used because
more frequently accessed pages (dark red) mainly reside in
the lower-tier memory (node-2). In contrast, less frequently
accessed pages are placed on the upper-tier memory 1. The pri-
mary reason for this is that the current memory management
does not allow page promotion or migration to the upper-tier
memory when there is no free space. Although such a design
decision is reasonable for DRAM-only systems, we need to
reconsider this assumption for multi-tiered memory systems.
Figure 4 depicts three cases whereby AutoNUMA encoun-
tered page promotion or migration failure due to lack of free
space in local DRAM.

Even though the page promotion or migration cannot be
made to the best memory node satisfying the access tier as
well as the access locality, there are effective alternatives
to placement in multi-tiered memory systems. When page
promotion fails from remote DCPMM to local DRAM, for
example, we have two possible workarounds: placing the page
either on the remote DRAM or on the local DCPMM.

Problem: Pages in the lower-tier are not promoted when
the upper-tier is fully utilized.

1Section 4.2.1 explains how we estimate the access frequency.
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Second, we observe the skewed page distribution across the
memory nodes in the lower-tier memory. This is because the
page movement to CPU-less nodes (DCPMM) is not considered
in the current Linux operating systems. Since the traditional
OSes were designed under the assumption that memory access
performance is highly affected by the access locality between
CPU and memory nodes, moving pages to CPU-less nodes
does not occur. Only if the destination upper-tier memory has
free space, the pages residing in the CPU-less node (lower-tier
memory) can be promoted through AutoNUMA. Figure 1a
shows arrows all the possible page promotion and migration
paths that the stock Linux kernel currently supports. Even
though the upper-tier memory is full, so that the operating
system cannot place pages on the preferred access tier, we
need to be able to preserve the access locality in the lower-
tier memory by freely allowing page movement across any
CPU-less nodes.

Problem: Pages are never migrated to the CPU-less (lower-
tier) nodes due to a NUMA policy that does not apply to
multi-tiered memory systems.

3.3 Page Reclamation

The current page reclamation is also designed for DRAM-only
systems backed by storage-based swap devices rather than
tiered memory systems. Traditionally, kswapd reclaims the
inactive pages in memory directly to the storage regardless of
the memory tier when the memory node is exhausted. It would
make sense to reclaim pages in the lower-tier memory to the
storage device. However, this is not a desirable solution for
the upper-tier memory pages when the lower-tier has enough
space. This limitation is intertwined with the two problems
explained in Section 3.2.

Problem: Frequently accessed pages from the lower-tier
cannot be promoted without demoting less frequently ac-
cessed pages from the upper-tier.
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Problem / limitation Our solution Section

Allocation fallback does not consider the access tier Promotion or migration to alternatives 4.1Pages are not promoted when upper-tier is full

Pages are never demoted or reclaimed to lower-tier memory Demotion for the least-accessed pages 4.2

Page classification is too coarse-grained (binary) Fine-grained access history estimation 4.2.1

Page reclamation to lower-tier & to storage needs to be decoupled Foreground promotion & background demotion 4.3

Table 1: Problems with current page management implementation, and our solutions
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Figure 5: Our conservative design: exploiting multi-tiered memory hierarchy (L: Local, R: Remote)

In Linux operating systems, part of the virtual address space
for each process can be mapped, either the file-backed or
the anonymous region. The pages in the file-backed region
contain the contents of an existing file(s) on memory so that
subsequent file I/O operations of the same file can be replaced
with memory access. On the other hand, pages belonging to
the anonymous region do not represent any file contents. This
is used for keeping arbitrary data on memory (e.g., malloc).
For each memory region, the Linux operating system classifies
memory pages into active or inactive. The kernel has
inactive lists containing pages that might not be in use while
keeping recently accessed pages on the active list. However,
the current page classification is too conservative to precisely
differentiate which pages are frequently or less frequently
accessed from the active and inactive lists.

Problem: Binary page classification (either active or inac-
tive) is too coarse-grained to be used for tiering.

Last, current page reclamation is very carefully performed
in the background to hide the cost of accessing the storage
devices from the critical path. In tiered memory systems,
however, the cost of demoting pages to the lower-tier memory
is cheaper than that of swapping out pages to the storage. We
need to decouple the demotion to the lower-tier memory from
traditional reclaim to the storage.

4 Automatic Multi-Tiered Memory

This section explores the design space of page management
to tiered memory systems. The goal of our page management
is to extract the full advantage of multi-tiered memory to im-

prove the performance of large-memory applications. To keep
our design simple, we base our design on the AutoNUMA
facility. Table 1 summarizes the supported mechanisms for
each design space. In the following subsections, we explain
the design and implementation of each scheme.

4.1 Exploiting Multi-Tiered Memory
As depicted in Figure 4, we take the NUMA fault as a demand
signal for page promotion or migration from the DCPMM
nodes or the remote DRAM node. Note that the current Au-
toNUMA deals with the promotion and migration requests
only if the upper-tier (local DRAM) memory has free space.
Otherwise, the request is discarded, and the faulted page re-
mains in the original memory. When the local DRAM is fully
occupied, our proposed design allows the pages to be pro-
moted or migrated into the next best memory node in the
multi-tiered memory hierarchy. This approach can exploit the
advantage of the multi-tiered memory hierarchy, providing
higher performance than the stock Linux kernel.

Figure 5 describes how we react when the local DRAM is
full. There are three sources of demand for page migration
or promotion to local DRAM in the multi-tier memory sys-
tem. The multi-tier hierarchy opens up new opportunities to
design memory placement. First, (5a) when the faulted page
resides in the local DCPMM ( 1 ), we promote the page to
the remote DRAM as the second best location ( 2 ). Since
the remote DRAM provides lower latency and higher band-
width than local DCPMM, we can improve the performance
of applications to which memory was initially allocated in the
lower-tier memory. Second, (5b) if the faulted page resides
in the remote DCPMM ( 1 ), we have two alternatives to ex-
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Figure 6: Our progressive design: opportunistic page promotion and migration with page eviction (L: Local, R: Remote)

ploit the advantage of the multi-tier memory hierarchy. We
attempt to promote the page to the remote DRAM ( 2 ). If
the remote DRAM also does not have free space, we try to
migrate the page to the local DCPMM ( 3 ). Unlike the stock
Linux kernel, our modified kernel supports migrating the page
to CPU-less nodes (local DCPMM). We call this AutoTiering
Conservative Promotion and Migration (CPM). Last, (5c) the
faulted page is in the remote DRAM ( 1 ). This means that
the page is already in the second best location. The existing
AutoNUMA is unable to complete the page migration oper-
ations between the upper-tier memory nodes. As a result, it
leads to sub-optimal performance. In such a case, we consider
the page exchange option to satisfy the demand for memory
affinity ( 2 ). The prior study proposed the page exchange
mechanism for tiered memory [35]. We repurpose the mecha-
nism to resolve the migration failures between the same tier
memory nodes as well. Internally, for each memory node,
we keep track of which pages fail to be migrated. We then
leverage this information to determine the migration demand
that can be resolved with the exchange operation. We call this
AutoTiering CPM with Exchange (CPMX).

Since this design does not require significant changes in
the existing Linux operating system, it is easily integrated on
top of the AutoNUMA facility. We anticipate that our con-
servative design can be a practical solution for such software-
managed tiered memory systems.

4.2 Opportunistic Promotion and Migration
As we design a conservative approach for finding the best
alternative, this is limited to extracting the full performance
benefit of software-managed tiered memory. In our conserva-
tive design, frequently used pages can reside in the lower-tier
(DCPMM) memory while the upper-tier (DRAM) memory
holds infrequently accessed data. To relieve such undesirable
memory placement, we explore a progressive strategy, oppor-
tunistically demoting a page from the upper-tier memory to
create free space. This is the main difference between con-
servative and progressive designs. By demoting a page, the
request for page promotion can be successful. For page de-

motion to be effective, we need to have the ability to select a
page that is highly unlikely to be reused within a short time.
Otherwise, the wrong selection can have a negative impact
on performance. We explain how we select a page for the
demotion in the following subsection (4.2.1).

Figure 6 depicts how our progressive approach works with
page demotion. When the NUMA page fault occurs ( 1 ),
we find the least accessed page from the upper-tier (local
DRAM) memory and compare the access frequency of the least
accessed page with the faulted page. If the selected page is
relatively less frequently accessed than the faulted page, we
demote the selected page to place the faulted page on the
higher-tier memory node. Otherwise, we prevent page promo-
tion or migration requests to keep the upper-tier memory with
more frequently accessed pages.

To promote a page from either local DCPMM (6a) or re-
mote DCPMM (6b), we demote the least accessed page se-
lected to the lower-tier memory ( 2a or 2b ). The destination
of the demoted page depends on where the page was previ-
ously accessed to preserve the locality. After that, ( 3 ) we
can finally promote the page to the local DRAM node. In
addition, Figure 6c shows how the page migration request
from the remote DRAM is made. We call this AutoTiering
Opportunistic Promotion and Migration (OPM).

We further optimize our progressive design by fusing demo-
tion and promotion (or migration) into one exchange opera-
tion, called AutoTiering OPM with Exchange (OPMX). When
the destination of the demotion is equal to the source of the
promotion or migration, we leverage the exchange operation
instead of individual promotion and migration. For exam-
ple (6a), if we need to demote a selected page into the local
DCPMM ( 2a ) and promote the page to the local DRAM ( 3 ),
two individual operations are fused. The exchange operation
eliminates unnecessary page allocation and free operations.

In case we cannot find a page to be demoted from the
upper-tier memory, we try to promote the page to the next
best location - the remote DRAM - as would normally be the
case. Since we are conducting page promotion and migration
opportunistically, we can reduce excessive page promotion
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Figure 7: Maintaining least accessed page lists

and demotion that incurs performance overhead associated
with page table manipulation and TLB shootdowns.

4.2.1 Predicting the Least Accessed Page

To make the progressive design effective, our goal is to find the
least accessed page from the upper-tier memory. As explained
in Section 3.3, the Linux operating system separates memory
into file-backed and anonymous pages as LRU lists. When
page promotion or migration fails due to lack of free space on
the upper-tier memory, we investigate the pages from the file-
backed region preferentially and move on to the anonymous
region if we are unable to find the least accessed page from
the file-backed region.

1 File-backed pages: We examine whether we can make
free space by demoting a page belonging to the file-backed
region. As file-backed pages are maintained in two LRU lists,
active and inactive, we regard the oldest page in the inactive
list as the least accessed page. Whenever the file-backed pages
are reaccessed (e.g., sys_read or sys_write), the operating
system marks the page as accessed and moves it into the active
list. Since the operating system can track the access of file-
backed pages, we estimate the least accessed page by looking
at the inactive list. If not, we move on to the active list. Note
that we preserve the portion of the page cache configured
in the kernel parameter (e.g., vfs_cache_pressure). If we
cannot find a reusable space in the file-backed region, then we
look for a page in the anonymous region as a fallback path.

2 Anonymous pages: On the other hand, we keep the ac-
cess (fault) information per page to select the least accessed
page in the anonymous region judiciously. To minimize the
monitoring overhead, we leverage the page scan facility used
for AutoNUMA, keeping track of whether the pages are ac-
cessed or not during a given time window. Then we build
the access history for each page with an N bit-vector. This
means that we maintain up to the last N-time access history.
We set N to 8. Based on the access history, we classify the
pages into N levels (Least Accessed Page lists), where N
is the number of bits that are set, as shown in Figure 7. Once
page demotion is required, we find one of the pages in the
LAP[0] list because those pages have not been accessed the
last N times. If the LAP[0] list is empty, then we try to find
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a page from the LAP[1] list, and so on. After that, we can
select the least accessed page in the upper-tier memory and
conduct page demotion to the lower-tier memory.

4.3 Hiding Latency of Page Demotion

To enforce page promotion, we are supposed to demote a page
from the target node. Before completing the page demotion,
we cannot proceed with the promotion request due to a lack of
space. The fault handling time is the sum of the two operations
in the critical path: page demotion and promotion. To remove
page demotion from the critical path, we explore a software
optimization technique.

We keep a page pool of a few reserved pages. We em-
pirically determine the reserved pages to 16 and 4 for 4KB
and 2MB, respectively. The reserved pages allow us to im-
mediately serve the promotion request without requiring the
demotion process, even though the upper-tier memory is full.
This approach is more cost-effective than the page exchange
scheme [35] because it hides the latency of the page demotion
in the critical path. Page demotion to the lower-tier memory
takes longer than page promotion to the upper-tier memory
because the storage-class memory used for lower-tier memory
provides better read performance than write performance. To
efficiently demote pages in the background, we maintain a
new kernel thread called kdemoted, demoting the least ac-
cessed pages in a batch. Once the number of reserved pages
reaches below a certain threshold, we wake the kernel thread
to start the demotion process. The threshold is set to 4 through
sensitivity studies.

Figure 8 depicts how simple optimization hides the latency
of the page demotion. For every promotion request ( 1 ), the
page can be promoted even when the upper-tier memory is
full ( 2 ). After completing the promotion, the NUMA fault
handler is returned without the demotion process, and future
accesses to the page ( 3 ) will take place on the upper-tier
memory. Meanwhile, kdemoted demotes the least accessed
pages as needed in a batch ( 1 ) to reclaim the memory pool
( 2 ). We call this OPM-BD (Background Demotion).
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5 Evaluation

5.1 Experimental Setup
To evaluate our proposed scheme, we use a NUMA server
equipped with two Intel Xeon Gold 5218 processors and
compose a multi-tiered memory hierarchy with a 16GB
DDR4-2666 DIMM and a 128GB Intel Optane DC Persis-
tent Memory (DCPMM) for each CPU socket. The server
system has a total of 32GB DRAM and 256GB DCPMM
as the main memory. To minimize measurement variability,
we disable HW features, including Hyper-Threading, DVFS,
Turbo-Boost, and prefetches. We use the Linux kernel 5.3
and Ubuntu 18.04 server as our baseline and implement our
proposed schemes on top of the kernel. Our code is available
at https://github.com/csl-ajou/AutoTiering. We run
benchmarks from graph500, SpecACCEL (OpenMP), Graph-
Mat [32], and Liblinear [22] used in recent large memory
systems [2, 35]. We configure them for all the benchmarks to
use all 32 cores across two sockets and more than 64GB of
memory to sufficiently stress the multi-tiered memory system.
Since the page size can affect performance in various ways,
we evaluate performance for the large page (2MB) as well as
the base page (4KB).

5.2 Experimental Results
Performance with our conservative approach (CPM):
Figure 9 presents the speedup results over the stock Linux
kernel (first bar). Note that AutoNUMA is enabled in the
default Linux kernel. The second bar in Figure 9 presents the
speedup with our conservative promotion and migration (CPM),
and the third bar shows performance changes when the conser-
vative exchange is applied (CPMX). For most of the workloads
we evaluate, we can see significant performance improve-
ment with our CPM. In 503.postencil, 553.pclvrleaf,
and 560.pilbdc, the speedup is over 2x, compared to the
baseline. Also, 559.pmniGhost shows 1.6x performance im-
provement. Our conservative design (CPM) can promote pages
from the lower-tier (DCPMM) memory nodes to the remote
DRAM node even though the locality is not preserved be-
cause the remote DRAM is faster than the local DCPMM. We

can also migrate pages between the two DCPMM nodes to
better access locality when accessing the lower-tier memory.
As a result, we can utilize the multi-tiered memory systems
more efficiently, leading to performance improvement.

For graph500 and GraphMat, we look at that the speedup
is around 17% and 19%, respectively. GraphMat and
Liblinear read the large dataset from file to its in-memory
data structure. The file-backed pages occupy a significant
portion of the DRAM nodes, while the crucial data struc-
tures reside in the DCPMM nodes. After that, it performs the
Pagerank algorithm for analytics. Unfortunately, we could not
observe that kswapd is invoked to free the inactive file-backed
pages. Thus, our CPM and CPMX do not have the opportunity
to utilize the DRAM nodes effectively.

On the other hand, we observe that the performance of
555.pseismic is not improved at all. This shows that the
memory placement is well balanced across the upper-tier and
lower-tier memory in the baseline. As a result, we could not
exploit the promotion and migration opportunities.

Performance with our progressive approach (OPM): We
look at further improvement with our progressive design de-
scribed in Section 4.2, which finds the least accessed page
from the upper-tier (local DRAM) node and demotes that
to the lower-tier memory. As shown in Figure 9, OPMX ex-
hibits better performance than CPMX for most of the work-
loads. In particular, graph500, GraphMat, Liblinear,
and 559.pmniGhost show significant speedup over CPMX.
The performance of 503.postencil, 553.pclvrleaf,
and 560.pilbdc is slightly degraded, by about 7 to 8%.
560.pilbdc fails to amortize the overhead of page promotion
and demotion, and 553.pclvrleaf shows that the opportu-
nity for page exchange is reduced.

We analyze the running behavior of graph500 to under-
stand performance improvement. Before performing the core
graph algorithm, it generates a lot of intermediate data that
occupies the DRAM space. As a result, the baseline and our
CPMX spend most of the time accessing the lower-tier memory
while running BFS (Breadth-First Search). Interestingly, it
exhibits the memory access locality on a small part of the
address space, even though the whole address space is huge.
With OPMX, we can demote the less frequently accessed data
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Figure 11: Estimated access frequency of pages corresponding to the LAP levels

to the lower-tier memory and utilize the upper-tier memory
space for more frequently accessed data. Therefore, we can
increase performance drastically.

For GraphMat, we see significant performance improve-
ment comes from the demotion of file-backed pages. By de-
fault, the file-backed page is initially placed on the inactive
list. After the page is reaccessed, it moves from the inactive
to the active list. By demoting the least accessed page from
the file-backed pages, we can improve the utilization of the
upper-tier memory.

With OPM(BD), we can further improve the performance
of most workloads. The improvement for graph500 and
GraphMat is considerable compared to OPMX. 555.pseismic
and 559.pmniGhost show marked improvement, and the
other SPEC workloads also restore the degraded performance
from the exchange version. Meanwhile, Liblinear shows
degraded performance slightly.

Distribution of memory usage: We analyze how multi-
tiered memory is utilized as time goes by. Figure 10 compares
the memory usage for the baseline and our progressive design
for selected workloads, which are beneficial from our CPM.
For the three SPEC workloads, the lower-tier memory is more
well balanced with CPM. This is because we allow pages to be
migrated to the CPU-less node. Even though CPM is unable

to satisfy the required access tier, it can preserve the access
locality in the lower-tier memory.

For GraphMat, the performance improvement is relatively
small compared to the SPEC workloads, and 555.pseismic
is not improved. The reason is that the baseline already keeps
the memory balance across lower-tier DIMMs. In the next
paragraph, we look at the effectiveness of our OPM-based
schemes for those two workloads.

Effectiveness of LAP classification: To evaluate the effec-
tiveness of our LAP scheme, we decompose all the pages
into each LAP level and build a histogram as time goes by.
Figure 11 presents the selected three workloads that show
significant improvement with OPMX compared to CPM. For
graph500, GraphMat, and 559.pmniGhost, the relatively
frequently accessed pages (dark red) corresponding to level 7
or 8 are placed on DRAM nodes, while DCPMM nodes serve
the relatively less accessed pages. This result shows that our
OPMX can be effective for applications whose working set fits
in the upper-tier memory.

The additional space for keeping the access history (8b),
two pointers for lists (16B), page frame number (8B), and last
faulted CPU number (1B) is required for each page to enable
our LAP scheme. Compared to the baseline, we require 32
bytes of metadata per page due to 8 bytes alignment, and it
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Figure 12: Cumulative distribution function (CDF) of page promotion and migration with OPMX and OPM(BD)
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Figure 13: Speedup of multi-programmed execution scenarios

results in an extra 288MB for the system memory of 32GB
DRAM with 256GB DCPMM. It slightly decreases the effec-
tive DRAM memory space by 0.91%.

Latency hiding with background demotion: We measure
promotion and exchange latency distribution in the page
fault path with ftrace and the kernel and user time. Fig-
ure 12 presents the latency CDF serving a page promotion
for OPM(BD)and a page exchange for OPMX. The solid line
is for the distribution, including the latency hiding scheme
(OPM(BD)), and the dashed line is for the OPMX scheme.
The fault latency varies for both schemes. We observe that
OPM(BD) shows better latency distribution for all the work-
loads than the exchange version because the demotion is off
the critical path. Especially, graph500 and 555.pseismic
are beneficial to the background demotion.

On the other hand, the end performance of Liblinear is
not improved with the background demotion shown in Fig-
ure 9. Even though the latency is reduced, the kernel execution
time is not significantly changed. This is due to the possibility
of incurring memory access contentions across the applica-
tion threads and the background kernel thread. We plan to
resolve the undesired background demotion case with rigor-
ous scheduling of kdemoted in our future work.

Performance with multi-programmed workloads: We
evaluate how well our proposed schemes work for multi-
programmed workloads in two scenarios, per socket and
across sockets. Figure 13 shows the speedup with CPM
and OPM(BD) when two applications run on the same server.
We mimic four multi-programmed scenarios (mix-1 to 4)

with the combination of the workloads. When isolating the
applications based on sockets (per socket), CPM does not
provide any performance improvements as expected because
it lacks the opportunity to exploit the multi-hierarchy of mem-
ory. On the other hand, we can observe significant perfor-
mance improvement with OPM(BD) for all cases except for
553.pclvrleaf in mix-2 as more frequently accessed pages
can be placed on the upper-tier memory. When allowing the
applications to run across sockets, these may not effectively
utilize the upper-tier memory nodes because the memory us-
age across the threads of applications is not evenly distributed.
In the across sockets setting, we observe that CPM can be
useful by exploiting the multi-tiered memory hierarchy. In ad-
dition, OPM(BD) can further improve performance, compared
to CPM, for all the cases.

Working-set sensitivity: Figure 14 presents the perfor-
mance by varying the working-set size from 32GB to
160GB for selected workloads. We observe that the perfor-
mance of graph500 and 559.pmniGhost is significantly im-
proved by both CPM and OPM(BD). For 503.postencil and
553.pclvrleaf, however, OPM(BD) and CPM show similar
performance improvements as the working-set size increases.
As explained in the LAP classification paragraph, most of the
pages are evenly accessed in those benchmarks less beneficial
to OPM(BD). Note that the speedup with our approach is sig-
nificant and still effective compared to stock Linux (Baseline).
Since the other workloads, such as GraphMat and Liblinear,
have fixed problem input sizes, we could not evaluate the
working-set sensitivity for the workloads.
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Figure 14: Performance speedup by varying the working-set size from 32GB to 160GB
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Performance comparison with prior studies: Figure 15
presents the performance comparison results with a recent
proposal from Intel called Tiering v0.6 [36]. Note that
Tiering v0.6 is based on Linux kernel version 5.9 but not
merged into the mainline. We show that our OPM(BD) out-
performs the performance of Tiering v0.6 for most of the
workloads.

For the anonymous memory region, Tiering v0.6 sup-
ports the page promotion to the upper-timer memory by ex-
tending the AutoNUMA framework. Through the monitoring
facility, they investigate whether the page is accessed during
the last two consecutive scans or not. If so, they consider the
page is hot and promote it. On the other hand, our OPM(BD)
maintains access history for the last N (8) times. The decision
is more accurate than looking at the previous two accesses.

Besides, Tiering v0.6 inherits the same limitation from
the traditional AutoNUMA. Once the local DRAM becomes
full, it is allowed to promote the page to neither the remote
DRAM nor the local DCPMM. Instead, kswapd is triggered
to reclaim pages to lower-tier memory. In contrast, our LAP
scheme makes the upper-tier memory better utilized by op-
portunistically performing promotion and demotion.

For graph500, we observe that Tiering v0.6 performs
better than OPM(BD). Our scheme outperforms the time
for building graphs before execution, but while traversing
the graph, graph500 with OPM(BD) accesses more pages
in the lower-tier memory compared to Tiering v0.6. In
Liblinear, it shows that Tiering v0.6 more aggressively
demotes the file-backed pages, leading to better utilization of
the upper-tier memory.
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Figure 16: Speedup with large page (LP) over base page (BP)

Performance with large page: To minimize the overhead
of TLB misses for large memory applications, modern com-
puter systems provide large page options. Figure 16 shows
the speedup results when we leverage the large page (2MB)
instead of the base page size (4KB). For GraphMat and
553.pclvrleaf, the performance improvement with large
pages can be observed in the OPM(BD) scheme. On the other
hand, most of the workloads do not present a significant dif-
ference. 559.pmniGhost and 560.pilbdc exhibit degraded
performance. When analyzing the LAP histogram for the
SPEC workloads with the large page, our scheme can quickly
separate pages into the LAP levels compared to the base
page. However, there is performance degradation because
the overhead of page demotion increases when moving the
large pages. To reduce the overhead, we take advantage
of the multi-threaded (MT) version of copying pages [35].
559.pmniGhost only shows improved performance, but the
other workloads become even worse. As mentioned in the
earlier paragraph (Latency hiding), we will further investigate
how our scheme can be extended to mitigate the performance
overhead in our future work.

6 Related Work

There have been significant efforts throughout hardware and
software to use tiered (or heterogeneous) memory systems
effectively. We compare our scheme with prior approaches.
First, most previous studies focused on designing page mi-
gration mechanisms and policies on two-tiered memory sys-
tems [3, 10, 11, 19, 20, 24, 26, 29, 35]. Unlike the prior work,
this study extends the problem space to the tiered memory
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augmented on traditional NUMA architecture, called multi-
tiered memory systems. As there are several alternatives to
page placement in multi-tiered memory systems, this paper ex-
ploits such opportunities when placing, promoting, and demot-
ing pages. Second, AutoTiering does not differentiate pages
into hot and cold with a predefined threshold used in prior
work [3, 19, 20]. In this study, promotion and demotion deci-
sions are made on the relative access frequency and recency
across the memory tier. To estimate page access activities, we
rely on the AutoNUMA facility. Last, we use a real-world
infrastructure to evaluate our proposed ideas based on Intel’s
Optane Persistent Memory (DCPMM), which has attracted
recent attention. Prior work emulated or simulated two-tiered
memory systems based on DRAM [3,11,19,20,35]. Although
real-world storage-class memory (SCM) shows asymmetry in
read and write performance, it was not correctly modeled in
emulating tiered memory with DRAM.

Below, we describe previous software efforts in the OS
community. To understand the heterogeneity of memory sys-
tems in Linux, the ACPI 6.2 specification introduced hetero-
geneous memory attributes tables (HMAT) to provide users
with performance information for various memory types [39].
Since the Linux kernel 5.0-rc1, the persistent memory (here,
Intel’s DCPMM) can be used as volatile main memory, al-
though it is slower than DRAM [15]. It can provide abundant
main memory space, but the policy and mechanism supporting
tiered memory hierarchy are in infancy. Recently, a new mem-
ory allocator for hardware-managed DRAM cache known as
shuffle page allocator introduced in the Linux kernel [34].
However, it is not enough to extract the full performance of
tiered memory because it does not consider the distance be-
tween memory nodes and NUMA typologies. Also, there
have been efforts to efficiently support page migration be-
tween fast and slow memory, but these still rely on active
and inactive list management [5, 16, 30] and have not been
merged into the mainline of the Linux kernel until now. In
the Windows operating system, they measure the cost of var-
ious page operations when the system is initialized through
MiComputeNumaCost and build a table like the NUMA dis-
tance of Linux, but this reflects the access costs [37]. Due to
limited information for Windows OS, we could not find how
they work for multi-tiered memory.

Researchers in the architecture community introduced hard-
ware techniques to effectively utilize two-tiered memory sys-
tems while minimizing the performance overhead in estimat-
ing access frequency [7, 28, 29, 31]. Choe et al. suggested
memory allocation schemes for the hardware-assisted multi-
tiered memory systems where the DRAM nodes are invisible
to software [6]. Except for that, none of the work consid-
ered the case of multi-tiered memory systems. The overheads
such as tracking and migrating pages can be reduced signifi-
cantly by architectural support, but the flexibility of making
decisions for promotion and demotion considering placement
alternatives is limited.

7 Conclusion

This work explored a set of new page management schemes
called AutoTiering, which benefit from multi-tiered memory
systems. We found that the Linux operating system focuses on
the access locality posed by NUMA, rather than the memory
tier. However, in multi-tiered memory systems, the cost of
accessing memory is not proportional to solely the locality.
We comprehensively addressed the diverse aspects of utilizing
the multi-tiered memory systems by considering two factors:
the access tier and locality. We built a proof of concept with
a real-world tiered memory system. Our evaluation showed
significant performance improvements in various benchmarks
than the stock Linux kernel version 5.3 and the previous
approach from Intel’s Tiering v0.6.

Future tiered-memory systems are expected to be more
diverse and heterogeneous. To make our approach more gen-
eral, we can maintain a table describing possible alternatives
to placement. While initializing memory in the operating
system, we can measure actual performance across memory
nodes. With such a new table, AutoTiering can adjust where
pages need to be promoted, demoted, or migrated adaptively,
as explained, without a static decision.
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